
Could No-Code be Code?
Toward a No-Code Programming Language for Citizen Developers

Assaf Avishahar-Zeira

assaf@too.software

TOO.Software

Bnei Atarot 6099100, Israel

David H. Lorenz

lorenz@openu.ac.il

Dept. of Mathematics and Computer Science

Open University of Israel

Ra’anana 4353701, Israel

Abstract
By 2030 for each filled position in Software Engineering, two

positions would remain unfilled. This already apparent loss

of productivity has the software industry scrambling to fill

the missing positions with citizen developers—technical peo-

ple with little or no programming skills—whowould be using

No-Code platforms to program various software solutions

in specific domains. However, currently available platforms

have fairly limited abstractions, lacking the flexibility of a

general purpose programming language.

To break the No-Code abstraction barrier, a very simple

yet expressive general purpose No-Code programming lan-

guage might provide citizen developers with an alternative

to domain-specific No-Code platforms. Unfortunately, these

requirements seem contradictory. Making a language very

simple and specific might render it crippled, thus limited to a

certain domain of problems. Conversely, making a language

very expressive and general, might render it too complicated

for citizen developers.

In this work we argue that a multi-paradigm minimalist

approach can bridge the gap between simplicity and expres-

siveness by including only abstractions considered intuitive

to citizens. As a concrete proof-of-concept, we present a

general purpose programming language designed for citizen

developers that is on the one hand very powerful and on the

other hand very simple. In fact, this language is so simple

that the entire development is accomplished by flowcharts

using mouse actions only, without typing a single line of

code, thus demonstrating a general purpose No-Code pro-

gramming language candidate for citizen developers.

CCS Concepts: • Software and its engineering→ Visual

languages; Multiparadigm languages.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

Onward! ’23, October 25–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0388-1/23/10.

https://doi.org/10.1145/3622758.3622893

Keywords: Citizen Developers, Golang, No-Code Software

Development, Projectional Editing, Programming Language

Design.

ACM Reference Format:
Assaf Avishahar-Zeira and David H. Lorenz. 2023. Could No-Code

be Code? Toward a No-Code Programming Language for Citi-

zen Developers. In Proceedings of the 2023 ACM SIGPLAN Inter-

national Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming and Software (Onward! ’23), October 25–27,

2023, Cascais, Portugal. ACM, New York, NY, USA, 17 pages. https:

//doi.org/10.1145/3622758.3622893

1 Introduction
Today and for the foreseeable future, the supply of profes-

sional programmers cannot meet the demand for software

engineers [5]. SlashData,
1
a leading analyst company in the

developer economy, projects a total number of 45 million

software engineers globally by year 2030. The U.S. Labor

Department further estimates a shortage of 85 million en-

gineers by that time, meaning that for each filled position

two would remain unfilled, and that because of this shortage

companies may lose $8.4 trillion revenue.

This shortage in programmers is pushing the software

industry toward No-Code tools that enable software develop-

ment by novice programmers and even non-programmers,

generally referred to as citizen developers [29] (hereafter,

citizens). These No-Code tools keep the promise of creat-

ing a solution without typing code, but they are by far less

expressive than a full blown general purpose programming

language (GPL), lacking any pretension to be Code.

In fact, No-Code tools resemble hardware more than soft-

ware development, missing the most important property of

software being “soft.” In order to retain the “softness” prop-

erty, they must be expressive like a programming language;

that is, beCode. At the same time theymust be simple enough

for citizens; that is, to also beNo-Code. This begs the question:

could No-Code be Code?

1.1 General Purpose Programming Languages
The past 70 years have witnessed an enormous investment

in programming languages. Thousands of books and scien-

tific papers were written, and hundreds of languages were

1
https://www.slashdata.co

https://orcid.org/0009-0001-3446-2452
https://orcid.org/0000-0001-7921-2265
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://doi.org/10.1145/3622758.3622893
https://www.slashdata.co

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

developed. Noticeably, on average, one in five Turing Award

citations attributes contribution to programming languages.

Furthermore, development of programming languages is

not an episode of the past as new languages are constantly

being invented. For example, TypeScript
2
and Rust [22]

were invented in the last decade. Rust gained popularity for

emphasizing performance, type safety, and concurrency, and

TypeScript gained popularity for adding syntax on top of

JavaScript [9], allowing developers to add types.

However, the evolution of programming languages is not

necessarily going in the direction of simplification. Type-

Script and Rust, for instance, can be considered among the

most complicated ever invented. It seems therefore that since

the invention of the first compiled programming language,

all popular GPLs share roughly the same complexity [18],

moving in the path set by Böhm [4] in 1951 in his Ph.D.

dissertation.

1.2 Simplicity is Complicated
For No-Code development, language simplicity is an essen-

tial albeit elusive property. There were some attempts to

create very simple languages by keeping the language small.

However, a small size of a programming language does not

necessarily make it easy to use or learn. Brainfuck [7], for

example, is regarded as one of the smallest programming

languages with only eight commands. However, it is no more

than an esoteric attempt. Coding in Brainfuck is a night-

mare, the generated code is completely unreadable, and the

performance is poor.

A language can be very small and highly expressive and

still lack simplicity. For example, a Turing machine has only

few language constructs while exhibiting Turing-complete

expressiveness, although Turing machines are far from being

easy to use for everyday programming.

A successful attempt to create a simple and practical GPL

was put forward by the three software engineers that in-

vented the Go language [6]. In order to keep the language

simple, Griesemer, Pike, and Thompson, each had the power

to veto new features [24]. This kept Go at about two times

smaller than other popular languages at that time, such as

C++ [31] and Java [3]. Notably, they reported that simplicity

is complicated [26].

Go excels in the domain of scalable, cloud-based servers

that are optimized for performance; its light-weight go rou-

tines enable massive multithreading and performance under

pressure. Go creates an efficient code, although C [16] and

Rust are better in that respect. Go is fairly simple; an expe-

rienced programmer can pick it up over a weekend.

In contrasts to Go, our aim is to define a GPL that would

make a big difference in how citizens use No-Code to build

software solutions. But could a pragmatic GPL be made any

simpler than Go?

2
https://github.com/microsoft/TypeScript

1.3 Contribution
We present a novel, very simple, general purpose, No-Code

programming language, named Too (Things Object-Oriented).
3

The Too language enables both citizen developers and profes-

sional programmers to create software solutions in a simple

manner, using drag-and-drop components, without having

to write code explicitly.

Too was influenced by the powerful and compact Go

language, but it is not a subset of Go. It contains the key

features of Go, such as concurrency, interfaces, inheritance,

as well as features that Go does not support, such as function

overloading, default values for formal arguments, and error

handling by catch/throw-like events (whose absence in Go

is reported as drawbacks).
4
With all these additional features

and more, Too is about 10 times smaller than Go (Tab. 1).

Creating a new language is by no means a lightweight

decision. An alternative could have been to start with Go,

or some other GPL, and strip off features that are deemed

inessential for citizens or unmanageable for No-Code de-

velopment. Shrinking an existing language may be a more

effective approach than devising a completely new language.

However, the resulted language would be limited to only fea-

tures found in Go. Instead, the features selected for the Too

language and for the software development methodology

at the core of the No-Code solution are geared toward pro-

ducing programs that citizens can read, develop, debug, and

evolve. For example, the Too language adopts software ar-

chitectures such as event-driven, component-based, and cloud

programming that Go lacks.

Outline. Sect. 2 states the goal of Too, setting criteria

for an ideal GPL for citizens. Sect. 3 reviews the underlying

principles for the language design. Sect. 4 describes the struc-

ture of programs in the language. Sect. 5 describes the cloud

development environment and its use of projectional edit-

ing and thing broker. Sect. 6 reviews the language internals.

Sect. 7 describes deployment and current use.

2 Objective
The goal of Too is to provide citizen developers with a No-

Code GPL. No-Code and a GPL may sound like two things

that cannot both be achieved, an oxymoron. It entails two

seemingly opposite requirements: domain-specific-like sim-

plicity and general-purpose-like expressibility. On the one

hand, in order for the language to be accepted by citizens, it

better be simple; it should enable easy entry, creating sim-

ple programs in minutes. On the other hand, assuming that

citizens’ software needs are like any other software needs,

the language must also be expressive enough, enabling citi-

zen developers to evolve and create high-end solutions that

3
https://too.software

4
https://www.toptal.com/go/4-go-language-criticisms

https://github.com/microsoft/TypeScript
https://too.software
https://www.toptal.com/go/4-go-language-criticisms

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

Table 1. Language comparison [8]

Language Keywords Operators Syntax rules Year

Fortran [23] 39 16 ∼170 1957

C [16] 32 27 ∼100 1970

C++ [31] 90 35 ∼200 1979

Python [35] 33 39 ∼90 1991

Java [3] 51 34 ∼250 1995

Ruby [34] 13 28 ∼60 1995

C# [12] 78 41 ∼220 2000

Go [6] 25 34 ∼100 2009

TypeScript
5

50 35 ∼150 2012

Rust [22] 35 45 ∼250 2015

Too 0 5 10 2022

involve concurrency, synchronization, complex algorithms,

and complex data-structures.

Preferably, we would like to see citizens and professionals

alike appreciating the many benefits a No-Code GPL brings.

Citizens would find the visual projectional editing easy and

productive to use, metaphorically as easy and as productive

as using a spreadsheet, with only mouse actions, such as

drag-and-drop and selection from drop-down menus. Profes-

sionals would also use the line-oriented text-based structural

editing and advanced features, just as a spreadsheet can also

offer advanced operations.

2.1 Limitation of Current No-Code Platforms
No-Code tools have many benefits [32], such as increased

productivity and accessibility, and some tools may be better

suited for certain types of applications or users. However,

none of them provides a GPL for citizens:

Limited functionality No-Code tools typically provide a

limited set of features and functionality compared to

traditional programming languages. This means that

citizens may not be able to build more complex appli-

cations or perform advanced customization [30].

Lack of flexibility No-Code tools are sometimes not flexi-

ble enough to accommodate unique business require-

ments or workflows. Users may thus need to adapt

their processes to fit within the limitations of the No-

Code tool, rather than being able to customize the tool

to meet their specific needs [27].

Limited control over code No-Code tools often abstract the

underlying code from the user, which means that users

have limited control over the code, and may not be

able to optimize or troubleshoot it.

Limited scalability No-Code tools may not be able to scale

to support large or complex applications. Users may

need to switch to traditional programming languages

or tools as their application grows in complexity [14].

Vendor lock-in Many No-Code tools are proprietary and

may not be easily transferable to other platforms. This

can create a dependency on the tool and vendor, which

may limit options for scaling or expanding the appli-

cation in the future [20].

2.2 Desiderata for a Citizens’ GPL
In designing a new No-Code language with the citizens’

perspective in mind, we assume that citizens would have the

following expectations from the GPL:

Expressiveness An expressive GPL provides the necessary

features and constructs to let citizen developers ex-

press complex ideas and algorithms in a clear and con-

cise way. It typically includes a wide range of abstrac-

tion mechanisms for programming and sometimes

even for meta-programming.

Readability The generated code should be human readable

and suitable for citizen comprehension, somewhat like

a natural language. It means that preferably algorithms

should be presented in a graphical manner (such as a

flowchart, for example) instead of line-oriented text.

This also means getting rid of unnecessary symbols

and words, such as “.”, “;”, and “this,” and many com-

plex operators, such as “+=” and “!==,” that are com-

mon in many GPLs. It means using icons to illustrate

things. It means getting rid of parentheses in function

calls with no arguments (e.g., use now instead of now()).

It means avoiding weird programmer’s abbreviations

and refraining from using naming conventions, such

as nightTime or night_time, in favor of simply using

night time or night·time. It also means code coloring

and hierarchical tool-tips.

Intuitive and familiar The language should be based on

known concepts, such as spreadsheets, rule-based sys-

tems, and directory listings; all are considered abstrac-

tions that people grasp easily. Spreadsheets have no

learning curve for entry level, but also pack built-in

power for professional use. Rules-based systems are

used in expert systems by common users and do not

require any prior knowledge in programming. They

could be found in email filters, parental control appli-

cations, routers, and more. They present a very simple

logic: if something happens, do this and that. Directory

listing is a known concept admitted by common users.

Easy to learn Preferably, the language should be based on

a small set of keywords, operators and syntax rules. It

takes a lot of time for a professional programmer to

assimilate all these constructs and master a new lan-

guage. Citizens do not have this privilege as they may

not be practicing development daily. If the grammar is

simple enough, citizens would more likely remember

it and use it.

Well documented Citizens should find the necessary in-

formation handy. This means lots of tool-tips, well

documented libraries, and documented tutorials [1, 2].

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Easy to debug Citizensmay not even be aware of the notion

of bug let alone use a debugger with all the controls.

This means that the debugger should be simple and

intelligent.

Easy versioning Citizens must gain confidence that should

something go wrong, they can always go back with

ease to a recent working version. It also means that

labeling should be simple and handy.

Simple to share and reuse Citizens are not full-time devel-

opers and therefore rely on reuse as much as possible.

Their involvement in development is minimal, con-

fining to the last mile, in order to get the job done.

The development environment should enable efficient

search and evaluation of existing libraries.

Simple to collaborate Citizens should be able to cooperate

on any program with others and especially with pro-

fessionals through a mentoring partnership. This calls

for cloud programming and instant web collaboration

without complex installation and configuration [15].

Responsiveness Citizens are not aware of compilation, and

therefore, their program should appear to be ready

to run at all times, except when fixing inconsisten-

cies (e.g., when removing an instance variable or a

method, leaving the logic inconsistent with behavior

that depend on them).

Hot plugging In order to reduce downtime, when running

a newly created software component, citizens would

appreciate an execution model that enables the ad-

dition, modification, or replacement of components,

while keeping other internal components intact; that

is, leaving them running, waving the requirement to

reboot them.

Live programming Citizens are more productive in a fluid

and interactive programming environment. Reducing

the programming feedback loop would enable citizens

to instantly see the immediate runtime effects of their

code changes as they program.

Language locality Preferably citizens would like to pro-

gram in their native tongue. Also, there exist an abun-

dant number of potential citizens who are technical

but simply do not know English.

3 Language Design Principles
The Too language is multi-paradigm, assimilating different

programming approaches to provide a simple programming

style for citizens.

3.1 Thing-based
Too refers to objects as things. In Too everything is made of

“things” without exception; from a simple register that holds

a boolean variable, to a learningmachine such as chatGPT that

crunches numbers, all are regarded as things. This simplifi-

cation makes basic types (such as int, float, etc.) redundant,

and altogether makes it easier for developers to assimilate

object-oriented principles.

Too supports the duality between composition (has-a rela-

tionship) and implementation inheritance (is-a relationship).

As in the Go language, the two have the same syntax, so

they both exist at the same time. This way two users may

refer to the same Too program, and one will see inheritance,

while the other will see composition. For example, in the

program switch { relay }, one user will say “a switch has

a relay,” while another will say “a switch is a relay.” Both

interpretations are legitimate.

A Too program defines a single thing, unlike many other

object-oriented languages that allow a program to have mul-

tiple objects at the root level. This simplification creates very

short programs that are concentrated on a single idea.

3.2 Event-driven
An event driven architecture is often perceived more natural

and hence would more likely be embraced by citizens. Most

GPLs adopt an explicit invocation architecture: one method

calls another method and instructs it to perform some action

or to retrieve some required information. But often the real

world works differently. A company receives a new order;

the road segment is congested; the ship is docking; a web

server receives a request for a Web page, etc. In neither case

did the system schedule or request the action. Instead the

event occurred based on an external action or activity. To

accommodate this, Too implements an implicit invocation

architecture with event processing.

3.3 Third-party Composition
In Too things are reusable software components that are

subject to composition by third parties [33]. In contrast to

a monolithic system in which all the things are running

as a unified entity over a single build, things in Too are

deployed independently of one another, and they interact by

communication rather than by standard function calls [19].

Hence some parts of the program could be activated while

other parts remain intact.

For example, this would allow the number·parameter thing

to be updated while the system is running, or to update

the conveyor thing while the production·line thing is running.

Such decoupling makes the system robust, extensible, re-

placeable, and live [11]. It also reduces overall system down-

time.

3.4 Marketplace for Things
To ensure portability, Too enforces a strict decoupling of

universal code from sensitive domain-specific information

(that might be confidential). In this way, with a click of a

button, the developer may upload a thing to the marketplace,

with the desired price tag, desired visibility (grant access

to specific developers, to the organization, or to the public),

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

sanitized from domain-specific information, ready to be used

by other developers, like a shared library item.

In addition, Too programs are typically very short, encour-

aging a much larger audience to get involved, to review the

code, to leave a 1–5 star rating, to suggest different interfaces,

names, and even icons, creating in this way a democratic

marketplace for citizens.

3.5 Simple Programming
Too strives for simplicity in its syntax, editing, data struc-

tures, control flow, operators, and multilingual support.

3.5.1 Simplified syntax. Too is simplified to the bare

minimum. Too aims to be the world’s smallest practical GPL,

with no keywords, five operators (Figures 1 and 2), and ten

syntax rules (Fig. 3). In comparison, Go, which is a fairly

small language, has 25 keywords, 34 operators, and about 100

syntax rules. This facilitates rapid acquisition of the language

and rapid development.

3.5.2 Simplified editing. Writing programs in Too is

made easy thanks to the use of projectional editing. Pro-

jectional editors are editors that modify the AST model of

the program through a projection to a view [10]. The pro-

jected view can be textual or visual. Projectional editors

allow modifications to the AST which are visualized back as

changes to the view.

3.5.3 Simplified data-structures. A thing in Too can

only own a single collection of minor things (instance vari-

ables). The language does not allow multiple data structures,

let alone nested data structures and global data structures.

Banning nested structures might be perceived at first as

a hit, since it requires to move the nested structure to an

external thing. However, this may enforce careful design:

"should I have two arrays, one for departure:tick and another

for arrival:tick, or should I have a single array of a new thing

called flight that contains these two fields?"

3.5.4 Simplified control flow. Expert systems especially,

and rule-based systems in general, present a simplified ap-

proach to flow control which is human-friendly and easy to

master. In such systems the logic is structured in rules with

a trigger and a list of sequential actions.

While most GPLs advocate loops that considerably in-

creases citizen incomprehension, Too provides many ways

to create an iterative logic but it is loop-free. The algorithms

in Too may only contain downstream branching. This means

that rule actions (or function actions) are executed in a se-

quential order and there is no way to go back and re-execute

an action that was already executed.

Nevertheless, in order to buy-in experienced programmers

that are used to loop statements, Too provides a gateway for

advanced developers with the iterative (“*”) operator. Simply

add the operator at the beginning of an action, and it be-

comes iterative. This would convert, for example, an if-then

= Initial value for thing in declaration

* Wildcard and iteration

? Decision point

[] Subscript

→ Redirect

Figure 1. Operators

Id Identifier

Str Singe or double quoted string

Num Number

Const Num or Str

Figure 2. Tokens

conditional action to a classical while-do loop. It is unlikely,

however, that citizens will need it or use it.

3.5.5 Simplified operators. It is assumed that citizens

are familiar with spreadsheets and this reassures the use

of functions (e.g., AND(x,y), IF(x,y,z)) together with fluent

style chaining that is natural for citizens, refraining com-

pletely from infix binary operators that might be difficult to

remember (e.g., “<<=”), solving precedence of operations and

simplifying readability. For example, the expression:

(a + b) * c

would be coded by developers as:

a plus(b) times(c)

3.5.6 Simplified localization and multilingual sup-
port. Localization is the process of adapting the program-

ming language to the citizen’s native tongue. This can make

it reachable for a larger audience of citizen developers, giving

them a smooth entry to the world of software development.

The syntax of Too by itself does not limit the code to the

English language since it does not contain any keywords

and it supports UTF-8 identifiers. For example, instead of

writing:

pi times(radius squared)

Greek developers would write:
6

π φορές(ακτίνα τετράγωνο)

Shifting to a different language only requires translating

the development environment once per language and, of

course, translating the catalog of things. The translation

of the catalog is scalable since it is done by developers. A

developer that places a new thing in the marketplace and

wishes to make it available in a different language should

take care of the translation, or mark it for auto-translate.

4 Language Definition
The grammar of Too has ten syntax rules, displayed in Fig. 3

in the notation of EBNF. An example of a logger program

6
Pronounced “pi fores aktina tetragono.”

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Thing ::=Id “{” {Decl | Event | When | Func}∗ “}”; Id × Decl∗ × Event∗ ×When∗ × Func∗ = Thing
Event ::=Id Params; Id × Params = Event
When ::={Idsrc [“[” Decl “]”] “.”}+ Id

sig
Params “{” {Act}∗ “}”; Id∗

src
× Decl∗ × Idsig × Params × Act∗ =When

Func ::=Id Params
in
“→” Params

out [“{” {Act}∗ “}”]hasBody; Id × Paramsin × Paramsout × Bool
hasBody

× Act∗ = Func
Act ::=[“*”]isIter Expr [“?” “{” {Actthen}∗ “}” [“{” {Actelse}∗ “}”]] ; BoolisIter × Expr × Bool

isCond
× Act∗

then
× Act∗

else
= Act

Expr ::=(Const | Ref) { “.” (Ref | Call)}∗ [“→” (Decl | Params)] ; (Const + Ref) × (Ref + Call)∗ × (Decl + Params) = Expr
Ref ::=Id [“[” (Expr | “*”) “]”]hasIdx; Id × Bool

hasIdx
× (Expr + Unit) = Ref

Call ::=Id “(” [{Expr | “*”}∗“,”]args “)”; Id × (Expr + Unit)∗
args

= Call
Decl ::=[“[]”]isArray [Idalias “:”] {Id}+“.” [“=” Const] [Str imp]; BoolisArray × Id

alias
× Id∗ × (Const + Unit) × Strimp = Decl

Params ::=“(” [{Decl}+“,” [...]isVariadic] “)”; Decl∗ × Bool
isVariadic

= Params

Figure 3. Concrete grammar (left) and abstract representation (right)

Listing 1. logger.too

logger {//members
[]data:string
[]temperature:sensor
sheet "Alice/sheet"

statistics normal

timer = "1s"
time

notifies(now:tick, 𝜇:number, 𝜎:number)//events

timer notifies·expiry() {//rules
timer reset("60s")
normal clear

normal append(temperature[*])
normal n is·not·equal·to(0)? {
normal mean → 𝜇

normal variance square·root → 𝜎

logger work(time now, 𝜇, 𝜎)
}

}

work(tick, 𝜇:number, 𝜎:number) → () {//functions
data["A"] assign(tick)
data["B"] assign(𝜇)
data["C"] assign(𝜎)
sheet append("Normal!A:A", data, "")
logger notifies(tick, 𝜇, 𝜎)

}
}

in Too projected to a textual view is shown in List. 1. The

program can also be projected to a compact (Fig. 4a), ex-

panded (Fig. 4b), or conventional (Fig. 4c) visual view. The

logger thing reads sensor values once per minute, calculates

their normal distribution, stores it in a Google spreadsheet,

and generates an event to signal other things.

4.1 Thing
Too defines four types of things: major thing, minor thing,

temporary thing, and abstract thing.

4.1.1 Major thing. Thing in Fig. 3 defines a major thing,

i.e., the program. For example, the program in List. 1 is a

Thing, where logger is the Id of the program.

A thing can be instantiated either explicitly via the “create

instance” option (e.g., bind a Google sheet thing to a Google

sheet file ID), or implicitly at runtime when a thing is first ac-

cessed, e.g., whenever the program refers to an array element

that does not exist, the element is automatically created.

4.1.2 Minor thing. A Decl in Fig. 3 inside a Thing defines a

minor thing. A thing may have zero or more minors. Collec-

tively, all the minors define a dictionary, which is effectively

the structure of the thing.

Each minor could be a scalar or an array. A scalar is an

instance of a thing, and an array may contain zero or more

scalars of the same thing. This is somewhat similar to the

JSON concept in which an object is a set of other objects and

arrays. The relation between Too and JSON goes further,

and a JSON string is used to initialize the thing by default

(by unmarshaling the string into the appropriate members).

An array is implemented by a map with named indices,

rather than a continuous chunk of memory (with running

indices). The keys (named indices) provide extra informa-

tion, orthogonal to the values. This makes the map a better

choice for citizens, as the key-value pairs could be used, for

example, to print the names (keys) alongside with the phone

numbers (values). A developer who wishes to use a stan-

dard array can do so by referring to a library thing such as

array·string or array·number.

A Decl may contain an array indicator (square brackets

prefix), an alias name (Sect. 4.2), an identifier path with one

or more things, an initialization value (the = symbol), and an

explicit import path (Sect. 4.3).

In List. 1, minor []temperature is an array of temperature

sensors, data is an alias for string and also an array, minor

timer = "1s" is a timer initialized to expire after one second,

and minor sheet "Alice/sheet" is a Google-sheet thing with a

specific import path referring to directory Alice/sheet.

The last thing on the identifier path is the effective thing

that determines the type of the declaration. For example, a

statistics thing may include two minors: normal and poisson.

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

(a) Compact (b) Expanded (c) Conventional

Figure 4. Projection to a visual view

Another thing may then declare the minor statistics normal,

where normal is the effective thing. When referring to normal

in the code, there is no need to include the statistics prefix,

unless there is another effective thing also named normal.

4.1.3 Temporary thing. A temporary thing holds the pa-

rameter of a function or a rule, or the content of an expression

byproduct when redirected (Sect. 4.8). This corresponds to

an automatic variable in other GPLs. Unlike minors that are

persistent, temporary things disappear when the function,

rule, or block ends.

4.1.4 Abstract thing. An abstract thing is an interface,

it may only contain function declarations (without a body),

and it cannot contain minor things, events, or rules (Sect. 4.4).

When another thing provides an implementation for all the

functions in the interface, it is said to implement the interface.

A function that accepts an interface as a parameter, may

accept any thing that implements the interface.

Scoping is lexical; temporary things have precedence over

minor things, and temporary things declared in a block have

precedence over temporary things declared in outer blocks.

4.2 Aliases
An alias creates an alternative name for a thing. For example,

archimedes:pi declares archimedes to be an alias name for pi.

Alias names must be distinctive (unique) within a block and

they are transitive; if a aliases b that aliases c, then a aliases c.

Thing c in this case is regarded as the basis of a and b.

Unlike many other GPLs that enforce aliases for every

declaration (e.g., float x, or let x:number), Too only requires

aliases to resolve ambiguities. This means that if a function

receives a gmail as a parameter, there is no strict requirement

to alias it (e.g., g:gmail).

4.3 Imports
By default, things are looked up in the directory tree using a

proximity metric, unless an import path is provided with a

specific directory. The directory tree may contain multiple

variants of the same thing in different directories. In such

cases, the program in focus locates the correct variant based

on directory distances.

It is important to note that this lookup scheme based on

proximity enables us to determine dependencies automat-

ically, unlike in many other GPL where dependencies are

explicit (using the import or the include pragma).

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

4.4 Signals and Rules
Signals are outbound event messages; rules are inbound

event processors.

4.4.1 Signals (outbound events). Event in Fig. 3 defines

an outbound event. A thing may declare zero or more events

that specify how the major thing may signal other things. It

defines the name of the signal and the parameters conveyed

in the signal message. In List. 1, notifies is an Event.

Params in Fig. 3 defines a list of declarations, optionally

indicating the last Decl as variadic (the ellipsis symbol). For

example, in List. 1, the notifies event has the following list of

parameters: (now:tick, 𝜇:number, 𝜎:number).

4.4.2 Rules (inbound events). When in Fig. 3 defines a

rule. A thing may have zero or more rules. A rule comprises

a trigger and a block of actions. The rule could be triggered

by a self generated signal or by a signal generated by an-

other thing. When triggered, the rule executes the actions

sequentially.

The trigger is composed of a source and a signal. The source

could be a list of one or more things that are contained in

one another. For example, the source of the following rule:

thermostat temperature notifies·low is a temperature thing con-

tained in a thermostat thing.

4.5 Actions
An Act in Fig. 3 could be simple or conditional, and executed

either once or iteratively, depending on whether or not it is

preceded by a ‘*’ prefix.

4.5.1 Simple action. Expr in Fig. 3 defines a simple ac-

tion. It may start with a constant (String or Number), fol-

lowed by zero or more Call and Ref , and optionally end

with a redirect operator that assigns the by-product(s) of

the last stage into one or more temporary things. In List. 1,

normal variance square·root → 𝜎 assigns the resulting stan-

dard deviation to the temporary sigma.

Ref in Fig. 3 defines a caller thing. In List. 1, the line

normal n is·not·equal·to(0) contains a chain of two references:
normal followed by n. In case the reference is an array, a

subscript may be included. For example, temperature[*] and
data["A"].

4.5.2 Conditional action. A conditional action is a simple

action with a byproduct constrained to a boolean, plus a true

block and optionally also a false block that follows.

In List. 1, the rule timer notifies·expiry has four actions; the
first three are simple actions, and the fourth is a conditional

action that has a true block of three more actions.

4.6 Functions
A thing may have zero or more functions. For example, work

in List. 1 is a function, where argument now:tick is the first

Decl in Params
in
. A function may take multiple arguments

(variadic parameter) and may return multiple values. A func-

tion could be defined ad-hoc in a call and could be set to run

independently.

Call in Fig. 3 defines a standard function call, comprising

a function name and a comma-separated argument list. In

List. 1, the line normal variance square·root contains a chain
of two calls: variance followed by square·root.

4.6.1 Built-in functions. Too provides a set of predefined
functions. The functions are not reserved and the developer

may override them with a different implementation. The

built-in functions are: id, set·id, as·string, marshal, unmarshal,

location, halt, and resume. An array thing contains in addition

the following functions: length, exist, not·exist, empty, delete,

instances, sort, is·ordered, and inverse·order.

4.7 Iterations
In addition to iterations through recursive function calls,

there are four possible types for iterations in Too.

4.7.1 Wildcard iteration over an array. The following
example iterates through the elements of an array. The ‘*’

operator gets the meaning of wildcard; that is, applies the

action to each element of the array. The program goes over

the set elements and adds them into sum.

bar {

[]set:number

sum:number

bar notifies·up {

sum add·to·it(set[*])
}

}

4.7.2 Wildcard iteration over key-value pairs. The fol-
lowing example iterates through the elements of the set array

using key-value pairs, where the ‘*’ operator alone is the

key and ‘set[*]’ is the value, calling the function add·odd to
sum up the odd numbers.

baz {

[]set:number

sum:number

baz notifies·up {

baz add·odd(*, set[*])
}

add·odd(key:string, value:number) → () {

set[key] is·odd? {

sum add·to·it(value)
}

}

}

Note that the expression may contain the wildcard key ‘*’

and the wildcard value ‘set[*]’ multiple times. It may even

contain various arrays, in which case the first wildcard array

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

that appears in the expression will be the subject for iteration.

For example, the print function

terminal print(*,": year=",year[*],", age=",age[*])

iterates through year elements (since it comes before age),

and prints also empty strings for age elements that do not

exist (when checking for their existence, they are created

automatically).

4.7.3 Iterate a simple action. The repetitive action is cre-

ated by prefixing an action with an ‘*’ operator. In the follow-

ing example, the iteration affects only the first terminal print

action, which is then executed in an infinite loop. It prints

"life is good!" infinitely, never reaching "hell".

goodlife {

terminal

goodlife notifies·up {

* terminal print("life is good!")

terminal print("hell")

}

}

4.7.4 Iterate a conditional action. Like in the case of

iterating a simple action, creating a repetitive conditional

action means that the entire then block of actions is executed

while the boolean expression is true, and the entire else block

is executed while the boolean expression is false.

The program in the example below repeatedly checks

if the sun is in the sky (by checking the time of the next

sunrise and next sunset). When true, it executes the then

block, printing "The sun is shining!". When false, it executes

the else block, printing "The stars are blinking!". It will go on

like this between day and night forever, never reaching "hell".

greatlight {

sun

terminal

greatlight notifies·up {

* sun is·on? {

terminal print("The sun is shining!")

}{

terminal print("The stars are blinking!")

}

terminal print("hell")

}

}

If the else block is omitted, the loop becomes similar to a

while-do, and "hell" would be reached at sunset.

4.8 Byproducts and Redirection
An expression may have zero or more byproducts, deter-

mined as follows. If the expression ends with a thing then

this thing is the byproduct. For example, the byproduct

of sensor location latitude is a number, since latitude aliases

a number. If the expression ends with a number constant

Runtime
Environment

ThingProjectional
Editing Broker

Executable

(Binaries)
Thing

Market-

(Global)
Place

Thing

(Local)
Inventory

Figure 5. Cloud development environment (CDE)

(or string constant), then the byproduct is a number (or a

string). If the expression ends with a function call, then the

byproducts are the function’s return values.

An expression may have no byproducts, for example, an

event signal (which never returns a value) or a function that

does not return a value (e.g., terminal print). Only expressions

with a single byproduct could be extended fluently.

If an expression has one or more byproducts, these byprod-

ucts could be redirected to temporary thing(s) using the

redirect (→) operator. For example, the byproduct of the

following action time now →now is a tick, therefore now

aliases tick. Similarly, the byproducts of the following action

sensor current·reading → (value, error) are the returned val-

ues (number, error), therefore value aliases number.

5 Cloud Development Environment (CDE)
Being simple is a good property for a language but it does not

necessarily imply being No-Code. In order to be No-Code

the CDE must be designed specifically to enable citizens

development by mouse actions alone.

Fig. 5 depicts the user interaction with the CDE. The devel-

oper is presented with two distinct applications: projectional

editing (Sect. 5.1) and thing broker (Sect. 5.2). The projectional

editing app lets the developer focus on a specific thing; on

its data structures and algorithms. The thing broker app lets

the developer focus on reviewing things posted by other de-

velopers and control the way things sourced by the domain

are represented to other developers.

When the developer commands to run the thing in focus,

it compiles the Abstract Syntax Tree (AST) together with

domain-specific data taken from the binding tree (Sect. 6.2),

stores the binary in the binaries DB, and runs the program.

The program then joins the domain’s “orchestra” in receiving

and sending messages.

5.1 Projectional Editing
The projectional editing app (Fig. 5) lets the developer ma-

nipulate the AST of the thing in focus. The CDE constantly

stores the changes in the local DB.

5.1.1 Challenges. Current CDEs that are AST aware pro-

vide good assistants at the expression level. They list all the

functions and objects that are possible at a certain point.

However, when the editing of the expression is completed,

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Listing 2. carHop.too

car·hop {
[]camera

[]last·time:tick
[]last·camera:string
time

notifies(plate:string,a:string,b:string,Δ:duration)

camera[b] notifies·vehicle·identified(plate:string) {
last·camera[plate] is·not·empty? {
last·camera[plate] → a

last·time[plate] → start

time now difference·from(start) → Δ
car·hop notifies(plate,a,b,Δ)

}
last·time[plate] assign(time now)
last·camera[plate] assign(b)

}
}

they neither project the next development action, nor do they

have any pretension to do so. The developer may choose

to end the block, break the loop, return from the function,

start a new expression, start a new if statement, start a new

for loop, etc. It seems therefore that listing all these options

and waiting for the programmer to make a decision will

not promote productivity. On the contrary, the developer

would surely outperform such a profusion of suggestions

with “hands on the keyboard.”

Another challenge with current CDEs relates to the mono-

lithic nature of source files that intermix data structures with

algorithms. Current CDEs do not overhaul this, but instead

cooperate with this approach. However, this might be too

perplexing for citizens that would likely find development

easier when the problem is decomposed into simpler prob-

lems.

In contrast, the Too CDE decomposes the problem into

smaller chunks, using different visual editing tools. In Too

the entire development can be accomplished solely by mouse

actions alone, using drag-and-drop for developing the data

structure (Sect. 5.1.2), drag-and-drop for the flow-control

(Sect. 5.1.3), and drop-downmenus for the actions (Sect. 5.1.4).

These tools are described next in relation to the car·hop pro-
gram in List. 2. Consider a city with lots of traffic cameras

that can identify license plates. The car·hop program notifies

of camera 𝑏 that detected the car, together with camera 𝑎

that previously detected the car, and the delta time it took to

hop from 𝑎 to 𝑏. This program could be used later by other

programs such as car·speed that notifies of the car speed,

car·ticket that notifies of cars crossing the speed limit, and

many other programs.

Figure 6. Developing the data structure

5.1.2 Developing the data structure. Since the structure
of a thing is simply a dictionary, the CDE enables dragging

and dropping things from the inventory into a list of mi-

nors, labeled members. It then enables removing things from

the members list, changing their order, changing attributes,

such as switching to/from array/scalar, setting an alias name,

setting an initial value, and assigning an instance.

Fig. 6 shows a portion of the CDE. The inventory drawer

is shown on the left side. This drawer is controlled by the

half-circled blue button () and it is normally closed. The

car·hop members are shown on the right-hand side of this

figure. The cards of the first three members illustrate an

array. The small caret symbol is used to expand and contract

the stack, listing the array members. An opened array would

show the named instances.

If the developer drops a thing and the members list already

contains a thing by this name, then the CDE automatically

assigns a random alias name for the new member, to keep

the dictionary sound. Later on, the developer may assign a

different alias to the new member.

5.1.3 Developing the control flow. Another portion of

the CDE specifies the rules, functions, and events. Fig. 7a

shows the rule camera notifies·vehicle·identified with its flow-

chart, built from a trigger in the oval box, and a collection of

action boxes connected by edges; simple actions in rectan-

gular boxes, and conditional actions in diamond boxes.

When hovering over a rule or a function, the editing tool-

bar pops-up, with two small icons outlined in blue: rectangle

and diamond. The developer may drag and drop these icons

on a flowchart edge to insert an empty action box into the

flowchart. Note that the oval box is opened automatically

when creating a new rule or function (using the blue plus

icon ()).

5.1.4 Developing an action. Fluent-style chaining simpli-

fies editing greatly since it shifts the focus to a single point,

namely, the end of the expression. The byproduct determines

the alternatives, such as the functions, events, and things

that could extend the expression at that point.

The editor may prune some alternatives if they lead to

a dead-end. For example, in case of a conditional action,

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

the editor will not list the terminal since it has no path to a

member that results with a boolean.

In addition to the alternatives induced by the byproduct,

the syntax dictates a fairly limited number of control alter-

natives:

• a delete alternative that acts as a “backspace” button,

erasing the last link in the fluent-style chain,

• a subscript alternative ([]), only shown if the byprod-

uct is an array,

• a wildcard alternative (*), only shown if the expression

is empty (new expression) and it is inside a subscript

or if it is an argument of a call/signal,

• an iterative alternative (*) placed at the beginning of

the action, only shown if the expression is the action’s

main expression,

• a redirect alternative (→), only shown if the expression

is main and it has one or more byproducts,

• a string alternative for typing a constant string, only

shown if the expression is empty, and

• a number alternative for typing a number constant,

only shown if the expression is empty.

This is in contrast to standard GPLs that may contain many

more alternatives: for the relevant operators (unary, binary

and ternary), and for the relevant opening or closing prece-

dence parentheses. Though, most surely standard GPLs will

not have the wildcard and iterative alternatives.

When the action box is selected (enters edit-mode), the

CDE places an extend symbol such as a plus or a pencil at

the end of every expression. These symbols mark the points

where the expressions could grow. Fig. 7b shows two plus

symbols at the end of the main expression and at the end of

the expression plate located inside the subscript. Then, when

the developer selects an extend symbol, a drop-down menu

opens, listing all the possible alternatives that are relevant

at the end of the expression. The list contains all the things

(shown in cyan) and all the functions/event signals (shown

in magenta) that could be chained at that point, plus a small

number of control alternatives at the beginning (shown in

gray). In Fig. 7b, for example, only two control alternatives

are relevant: delete and iterative.

The projectional editor colors the extend symbols to indi-

cate expression validity. Red indicates that the expression

currently does not satisfy a constraint, and blue is used in all

other cases. The red symbols remains persistent after the ac-

tion box is no longer in edit mode. This is to clearly indicate

of a problem that prevents the program from running.

5.1.5 Textual view. In addition to the graphical editing

by mouse only, the CDE enables conventional typing using

a keyboard. This could be used as a gateway for professional

developers that require hands on the keyboard. The typ-

ing is not entirely free since the structured editor provides

smart word completion and keeps the expression structurally

sound. While typing, the CDE shows the relevant alterna-

tives in a drop-down menu, like in the graphical editing case,

disallowing keys that are not in the initials of the alternatives.

The typing is done in the action box or in a special 1-line bar

referred to as the expression bar (similar to the formula bar

of a spreadsheet).

The alternatives listed in the drop-down menu could be

ordered alphabetically; by their natural order in the things;

by frequency of use; or by a smart algorithm that predicts the

probability for selecting every alternative. Such an algorithm

may use AI capabilities that are built from analyzing many

examples in many domains of problems.

In order to enable collaboration, the CDE support cloud

programming, adopting a concept used in Google docs (or

Google sheets), where the cursor (or cell frame) is colored to

identify the collaborator. Similarly, when an action is selected

by another developer, the action frame changes to a color

different than blue, and when hovering, the name of the user

is shown (as a tool-tip).

5.1.6 Projecting an action. The projectional editor main-

tains the AST, and this is used for code coloring; for opening

Camel Case (e.g., weAre projected as we are); for cleaning

unnecessary parentheses; for cleaning unnecessary connec-

tive symbols such as dots; and for showing the thing’s icon

when hovering. These measures create a human friendly

representation with an improved readability.

For those that prefer the binary infix notation, the pro-

jectional editor may convert upon request the fluent style

notation to the corresponding binary infix notation. For ex-

ample,

a plus(b) times(c)

would be replaced by:

(a + b) * c

5.2 Thing Broker
The thing broker app (Fig. 5) interacts with the developer

and with the two related DBs: the local inventory and the

global marketplace. When the developer instructs the thing

broker app to “share” the thing in focus, the thing is copied

from the inventory to the marketplace. It also allows the

developer to purchase things from the marketplace and copy

them to the inventory.

The thing broker app acts like a standard e-commerce

arena (like Amazon or AliExpress). It maintains the follow-

ing records for every thing: name, icon, owner domain, de-

scription, price,
7
promotion, search keywords, program brief

with function and rule and event headers, documentation,

hyperlink for more information (optional), dependency bun-

dle, date posted, number of downloads, rating (such as 1-5

7
After a period of time the thing may become a public domain and available

at no cost, like a patent that expired.

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

(a) Editing a flowchart (b) Editing an action

Figure 7. Developing the control flow

stars), developer reviews, related products (things), and num-

ber of stock items (may be relevant for physical things, for

example).

When purchasing a thing, the thing broker app takes care

of the billing; it debits the buyer’s domain and credits the

seller’s domain, leaving some commission to the “house” (to

the thing broker). If some things in the dependency bundle

have a price tag, then the cost of the downloaded thing would

be the accumulated cost, and the buyer get the breakdown

of the cost. In such case, the thing broker app takes care

of distributing the payment, crediting the various domains.

Likewise, if the developer decides to return the thing and

cancel the purchase, the thing broker app performs the same

actions in the reverse order.

Some things might be located outside the cloud (e.g., an ex-

ternal chat-bot, an external web-server, or a physical sensor),

in which case they are represented in the marketplace only

with their mock alternative. When the developer purchases a

physical thing such as a sensor, it is the responsibility of the

seller to ship the real thing to the buyer as a standard mer-

chandise. The thing broker app is open for third parties that

wish to post things developed in a different environment.

For example, an oracle reports of airplanes take-offs and

landing, an AI server, a third party database, etc. Again, in

that case the third parties only post the mock alternative in

the marketplace, and this mock communicates with the real

thing. Third parties are responsible for the availability of the

real thing (it is not the responsibility of the Too platform).

5.2.1 Upload (sharing). The local inventory contains a

subset of the global marketplace, with all the things that

were purchased, plus some local things that were developed

in the domain. When the developer posts a thing for sharing,

the thing is copied from the inventory to the same address at

the marketplace, along with the dependency bundle attached

to it.

5.2.2 Download (purchasing). When the thing is pur-

chased via the thing broker, the thing is copied from the

global marketplace to the same address at the local inven-

tory, and then the dependency bundle is opened and the things

in the bundle are copied to the locations dictated by their

paths. At this stage it might be that the domain contains al-

ready one or more of the imported things (it contains already

the purchased thing or one of the things in its dependency

bundle).

In such a case the platform analyzes the discrepancy to

verify that the copy can go silently. Otherwise, the platform

prompts the developer to resolve the conflict and make the

decision whether or not to copy. Silent copy could occur

when the imported thing is backward-compatible containing

“harmless” additional functions, rules, or events. For example,

an imported string thing that contains in addition the replace

function.

5.2.3 Versioning. The dependency bundle is a set of things
that are known to compile and run together, along with their

path information and specific version numbers. When the

developer runs program foo, the CDE automatically saves

the things in the dependency bundle of foo and assigns them

a version number. At that time, thing foo also receives a

version number and is saved. Later on the developer may

assign to foo and its dependency bundle a meaningful label.

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

red[R]

blue[B]green[G]

Figure 8. Real vs. mock instances

Note that the CDE also saves things automatically during

development. However, these micro-versions are created for

undo and redo purposes and do not get version numbers.

5.2.4 Labeling. Labeling is different from versioning since

it applies to a group of things rather than a single thing.

When the developer assigns a label to a thing, this unique

label is attached also to the dependency bundle. In this way,

at need, the developer may go back to a history label and

restore the things in the bundle to recover a sound working

version.

6 Language Internals
Too runtime model is based on software components that

can be deployed and run independently. Each component

runs in a separate process with a dedicated service that can

bring it up in case of failure. A component may also run on

a different machine, or in a different geographical location

(consider a sensor programmed in C++, running inside a

Shrimp pool in Guayaquil, Ecuador).

Fig. 8 describes three components (three large circles) that

correspond to instances of the following three programs:

red { notifies }

green { red }

blue { red green }

Instance blue[B] contains instances red[R] and green[G]. How-

ever, since instances are unique, blue[B] contains the mocks

of these instances (small circles). The mocks provide a thin

interface that communicates with the real instance (via RPC).

6.1 Silent vs. Non-silent
A thing in Too can be either silent or non-silent. A thing

is defined as silent if it does not generate any signal nor

receive any signal, recursively. Recursively means that its

minors must also be silent. A string and a number are silent

and likewisemath is silent since it only contains the numbers

𝜋 and 𝑒 that are silent (and a collection of functions).

Thing gmail, on the other hand, is non-silent since it gen-

erates the notifies·email signal (to notify other things of an in-

coming email). Likewise red, green, blue are non-silent (since

red notifies).

We use this dichotomy to automatically identify the com-

ponents in the system; components are the non-silent things.

The user may choose to activate a non-silent instance (a com-

ponent) or leave it inactivated, but cannot activate a silent

instance. Note that there is no point in activating a silent

thing since the result of running it is the same as not running

it (no output). For those (rare) cases in which there is a need

to reference a silent thing (e.g., boolean) from other things,

the library contains a corresponding non-silent version (e.g.,

boolean·parameter).

When a component is constructed, its silent members are

constructed locally as real instances (there is no need to

reference them via RPC). This means that if two components

instantiate a similar silent thing (e.g., instance “Bob" of thing

string), then each maintains a different copy of this instance,

and changing one does not affect the other.

A silent thing consumes fairly limited resources resulting

in a small footprint in memory. A non-silent thing consumes

much more resources, both in memory and network. It gen-

erates periodic notifies·alive signals, and it keeps an open

connection to the message server in order to send and re-

ceive signals. For example, a booleanwould consume a single

byte in memory, while a boolean·parameter would consume

about 10KB (this is the footprint of a TCP client), and would

consume in addition network resources.

6.2 Binding Tree
At construction, when resources are allocated, the instances

are named and optionally also initialized. The names and ini-

tialization strings come from a binding JSON file. The JSON

is a tree arranged as an interleaved structure of instances

and things, and it is generated automatically. List. 3 is an

example for a binding JSON that corresponds to the greatlight

program in Sect. 4.7.4.

6.3 Initialization
A special initialize function is called right after the thing’s

resources are allocated and all the minors are constructed.

This function enables both the developer and the user to pro-

vide initialization values. The developer controls the degree

of user involvement in the initialization. It could be that the

entire initialization is left for the user; that the developer

provides some initialization that the user can override; or

that the developer blocks the user completely and provides

initialization values alone.

6.4 Run-Shallow vs. Run-Deep
There are two running modes in Too. Run-deep activates

the component and its internal members, recursively. Run-

shallow only activates the component, leaving its members

intact. The run-shallow mode is useful when the user needs

to minimize the system’s downtime. This may create syn-

chronization problems in case the minor is not yet running,

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

Listing 3. Binding JSON file

{

"thingName": "greatlight",

"instances": [{

"instanceName": "", "initial": "",

"things": [{

"thingName": "sun",

"instances": [{

"instanceName": "Boston", "initial": "",

"things": []

}]

},{

"thingName": "terminal",

"instances": [{

"instanceName": "Console", "initial": "",

"things": []

}]

}]

}]

}

or the minor is not updated to support the same functional-

ity. However, the system generates appropriate error events

that could be processed further. The run-deep mode is useful

when the system has gone through a major revision and

needs to restart all relevant components to make sure they

are all synchronized.

7 Real-World Deployment
An early version of Too in text-based mode was released

in 2020 and used by professional developers. The current

version with its CDE is available since 2023, and used by

both professional and citizen developers. Its library currently

contains about 40 things, including: vector, matrix, random,

list, gmail, thread·interface, go, channel, hash, io, os, regexp, pdf,
unicode, image, error, voice·caller, etc.

7.1 Experience Building Systems
Too is in its infancy but is already being used experimentally

in domains such as Precision Agriculture (PA), End-to-End

Factory Automation, and Robotic Process Automation (RPA).

7.1.1 System A – Agriculture cultivation farm (a start-
up company). In late summer 2020, a large indoor farming

startup deployed Too as a control system. It has been in

production ever since. To date, tens of millions of dollars

have been invested in the 15 indoor spaces controlled by

Too.

The system analyses abnormal conditions in the farm,

such as the operation of electricity, cooling/heating units,

and humidity/temperature/CO2 in the growing rooms. For

example, a generator thing reads the number of times the

generator has started (via an rs485 thing), and when this

number increases, it sends voice calls (via a voice·caller thing)
to the persons in charge to indicate that the operation is now

running on the generator and not on the power grid.

The system was developed in two months by an expert

(a programmer). Today, the system is controlled by two citi-

zens. The system processes about 100, 000 events daily, by

about 25 components with about 100 instances (plus about

100 physical sensors).

7.1.2 System B – Cosmetics factory. The system con-

trols various processes in the laboratory, such as filling to the

threshold, closing the heater when the temperature reaches

a certain level, and controlling the process of emulsion by

changing the speed of the mixer as the temperature changes,

and alerting when to add the next phase.

The system was developed in 2023 by a citizen under the

supervision of an expert (programmer). The system is in

daily use, and now two citizens constantly improve it. Once

the system establishes confidence, the factory plans to use it

to control production processes on the shop floor.

7.1.3 System C – RPA. The system converts leads re-

ceived through a Contact Us form on a website, and sends

them using an sms thing to the appropriate sales represen-

tative based on the City field. Each sales representative has

a territory defined by a comma-separated list of cities. The

system is triggered by email messages containing the contact

form in a JSON object. It decomposes the object into a contact

thing and then uses the contains function of the string thing

to check if the sales rep’s territory contains the city.

A citizen created this program unsupervised after watch-

ing three training videos: one showing an example of the

contains function of the string thing, a second video demon-

strating how to convert a JSON object into a thing, and a

third video describing the gmail thing. The system processes

about 10 leads a day.

7.2 Lessons Learned
Even with No-Code support, software development is gen-

erally challenging for citizens. What seems to be trivial for

professional developers may be complicated for citizens. For

example, OOP was supposed to be very natural but turned

out to be intricate especially the invocation of a method

(function in Too). Likewise, lacking education in Boolean

algebra, creating expressions with multiple operands (such

as “not a or not b") was confusing for citizens.

However, with sufficient training and mentoring in the

early stages, citizens succeeded in creating simple systems.

Moreover, in time they modified and extended these systems

into complex systems. Generally, after a kick-start, citizens

begun to benefit from developing themselves.

The concepts of components, events, and rules were easier

to grasp by citizens. Breaking the programming task into

smaller tasks was critical. Citizens had no problems with the

flowchart style in the rules and functions sections. Citizens

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

had some difficulties with the members section, finding the

appropriate thing in the inventory. They requested better

documentation and a search function. Creating actions in

the rules section was the most complicated task for citizens.

The main difficulty was with the concept of by-products

(fluent style function chaining does not exist in spreadsheets

and is new to most).

Cloud programming was found to be very useful. It en-

abled a mentor and a novice to work together on the same

program and solve problems in a tight loop. Having a play-

ground was also very helpful. The playground was a good

place for citizens to gain confidence because there is no

penalty for mistakes there.
8

7.3 Citizen Feedback
We have interviewed 10 citizens, 5 of whom were asked to

solve a similar problem (create a thing with a few rules).

There were four levels of difficulty for solving the problem:

(i) modifying parameters; (ii) local changes; (iii) creating a

new thing; and (iv) creating a complete project with multiple

things.

In general, we saw that with no training, citizens succeed

with problems of type (i) mainly because Too programs are

small and there was no problem locating the relevant param-

eter. With minimal training, they coped well with simple

problems of type (ii) involving adding and modifying actions

and conditional actions. Complex problems of type (ii) in-

volving arrays, wildcard operators, and iterations required

additional training or mentoring. Similarly, with minimal

training citizens succeeded with problems of type (iii), creat-

ing a new thing and new rules within that thing.

As for problems of type (iv), these required experienced

citizens. Indeed we saw that less experienced citizens could

not generalize the RPA solution to n reps, which requires

iteration and an additional thing (rep). Instead, the outcome

was a long chain of if sentences (checking if rep1 contains

the city, otherwise if rep2 contains the city, etc.)

7.4 Threats to Validity
Answering the question “could No-Code be Code?” requires a

user study to proper evaluate whether or not citizens could

truly develop themselves No-Code solutions in Too. With-

out a user study, the No-Code narrative should be taken

cautiously. Although citizens are not required to write code,

they do perform drag-and-drop operations on code blocks.

Hence, they still need to read and understand “Code.” How-

ever, our experience so far suggests that the ability to build

a No-Code solution depends more on the complexity of the

problem at hand and less on the skills of the developer.

8
When programming errors might have led to a substantial impact on the

business, mentoring was a must.

It is difficult to separate out what we believe would be

intuitive to citizens and what would actually prove to be in-

tuitive to citizen developers. Nevertheless, in our experience

citizens could be mentored on concepts in Too that were

new to them despite their lack of training in programming.

Finally, we note that Too is in active development and has

evolved over time. Thus, the user-experience with Too may

have varied as a result of this evolution.

8 Discussion and Related Work
No-Code programming is a special case of Low-Code (visual)

programming [13]. Low-Code requires minimal but some

programming skills, targeting professionals that lack exper-

tise in a specific domain, whereas No-Code requires technical

skills but no programming skills, targeting end-users who

are citizens.

Both No-Code and Low-Code are special cases of visual

programming languages that use visual elements such as

blocks, graphs, and flowcharts to represent code. However,

not every graphical language is necessarily No-Code.

Block-based coding languages [21] are visual program-

ming languages that let end users create programs by con-

necting program elements graphically rather than textu-

ally [38]. For example, Scratch
9
[28] is a popular visual pro-

gramming language for children that uses blocks to represent

commands. More generally, Blockly
10
[25] is a JavaScript

library for building a customized visual programming editor

that uses interlocking blocks to represent elements of the

code. With Kogi [37], a tool for deriving Blockly code from

a simplified context-free grammar of a given language [36],

a block-based coding visual environment can be generated

for many languages. However, not every block-based coding

visual environment necessarily provides a No-Code program-

ming experience for citizen developers, because the graphical

abstractions do not necessarily hide the complexity of the

underlying language.

Too distinguishes itself from traditional visual languages

in its intent and purpose. The intention of Low-Code plat-

forms is often to reduce coding effort in order to enable

rapid development. In comparison, the intention of Too is to

empower citizen developers. Most No-Code and Low-Code

platforms are special purpose, targeting a specific domain,

such as No-Code AI (e.g., Obviously.AI)
11

or Low-Code

Machine Learning (e.g., AutoML).
12
They enable “domain

citizens” to reap the benefits of the domain without deep

knowledge of that domain. In comparison, Too is general

purpose.

One of the main goals of Too is to make programming

accessible for citizens. Although Too provides an ecosystem

9
https://www.scratchfoundation.org

10
https://developers.google.com/blockly

11
https://www.obviously.ai

12
https://cloud.google.com/automl

https://www.scratchfoundation.org
https://developers.google.com/blockly
https://www.obviously.ai
https://cloud.google.com/automl

Onward! ’23, October 25–27, 2023, Cascais, Portugal Assaf Avishahar-Zeira and David H. Lorenz

to create complete software solutions, it would be beneficial

to have interfaces to other languages. This would enable

integration with modules developed by professional pro-

grammers in different programming languages.

Too currently provides two options for interfacing with

other languages and other development platforms. The first

is communication; developers may send and receive event

signals to and from an external module. This would allow a

Too program to invoke certain actions in another external

module, and visa versa; it would allow an external module to

invoke certain action in a Too program. The API is available

over MQTT protocol and in the future also over HTTP.

The second option is a Go language backdoor; developers

may write an entire things in Go language, or some specific

functions or some specific rules. This is done by uploading

the a Go file to the appropriate folder. File naming conven-

tion dictates the compiler that a thing (or function or rule)

is written in Go and there is no need to compile it. This

backdoor is useful for implementing things that interacts

with the operating system, for example.

9 Conclusion
The main contribution of this work is a GPL that is designed

to be accessible to non-programmers. The design of Too

makes it powerful enough to be general purpose, but at

the same time simple enough to program, understand, and

evolve. Too is intended to be used by citizens (in their native

tongue) to help fill the anticipated gap between the need for

programmers and their expected dearth.

Designing a programmable, practical, yet citizen-friendly,

GPL is a trail-and-error process. It is analogous to taking out

controls and gauges from an aircraft, piece by piece, verifying

that it is still airworthy and easy to fly. For example, Too

is inspired by Go but omits the go keyword for goroutines.

Instead, Too uses go run(thread, "data"), where thread has

the thread entry function start. Too compiles into Go, but it

is not a subset of Go.

Ease of understanding refers to how easily a program writ-

ten in a language can be understood by a human. The easier

it is to understand the code, the simpler the language is con-

sidered to be. The minimalism of Too helps keep the abstrac-

tion gap between the No-Code graphical projection (Fig. 4)

and the underlying textual code (List. 1) small and therefore

easy to understand. However, minimizing the language was

not a goal in itself; rather, the goal was language simplicity

accessible to citizens.

Some of the features that make Too appealing to citizens

are: projection of the business logic as rules; projection of

the control flow as a two-dimensional flowcharts; projection

of action blocks in a way that graphically facilitates flexible

edits; and limiting data-structures to a single set of scalars

and arrays.

Other features of Too are important mainly for the blend:

For example, component based architecture is important

for the blend, as citizen developers would greatly benefit

from sharing and deploying components selectively, that like

in the physical world could be manipulated independently

(turned on/off, debugged, etc.). Similarly, projectional editing

is important for the blend, as citizens would greatly benefit

from an intelligent assistant.

Novel features of Too include: the dichotomy between

silent and non-silent things that allows Too to automatically

classify components; the ability to automatically resolve de-

pendencies, without explicit import or include declarations;

and the mechanism for developing an action that marks a

few cursor points for editing at the end of an expression,

which is crucial for No-Code programming in Too.

In designing Too we wanted to create a programming lan-

guage that would be appealing for both novice and advanced

citizens, in the spirit of spreadsheets, but we may have ended

up with a language of interest to a broader range of users,

including professional developers. The language is small and

simple by design to enable end-users easy entry in creating

simple programs. But it is also expressive enough to enable

advanced users to evolve and create high-end solutions that

involve concurrency, synchronization, complex algorithms,

and complex data-structures.

Too allows only a single thing per program, which makes

programs short, concentrating on a single idea. In addition

Too promotes a marketplace where developers can easily

share their things. These two features encourage contri-

butions, advocating wisdom of the crowd. Too is a cloud

programming language meaning that several developers

can work in collaboration on the same piece of code. Add

to it flowcharts and icons and you get closer to Knuth’s

utopia [17] — “Programming is an Art.”

Acknowledgments. Many people took part in the design

and implementation of Too during its five-year development

and construction. We would especially like to thank Shahar

Zeira for shaping the language in its early stages (making

it stateful, introducing the concept that every thing is made

of things including basic types, freeing it from operators by

replacing them with function calls, and more). We thank Oz

Garinkol for his help in shaping the GUI. Finally, we wish

to thank Shahar, Oz, and the anonymous reviewers for their

valuable comments on this work.

References
[1] Md Abdullah Al Alamin, Sanjay Malakar, Gias Uddin, Sadia Afroz,

Tameem Bin Haider, and Anindya Iqbal. 2021. An Empirical Study

of Developer Discussions on Low-Code Software Development Chal-

lenges. In Proceedings of the 18
th
IEEE/ACM International Conference on

Mining Software Repositories (MSR 2021). IEEE, Madrid, Spain, 46–57.

https://doi.org/10.1109/MSR52588.2021.00018

[2] Md Abdullah Al Alamin, Gias Uddin, Sanjay Malakar, Sadia Afroz,

TameemHaider, and Anindya Iqbal. 2022. Developer Discussion Topics

https://doi.org/10.1109/MSR52588.2021.00018

Could No-Code be Code? Onward! ’23, October 25–27, 2023, Cascais, Portugal

on the Adoption and Barriers of Low Code Software Development

Platforms. Empirical Software Engineering 28, 4 (Nov. 2022), 1–59.

https://doi.org/10.1007/s10664-022-10244-0

[3] Ken Arnold and James Gosling. 1996. The Java Programming Language.

Addison-Wesley, Reading, MA.

[4] Corrado Böhm. 1954. Calculatrices Digitales: du Déchiffrage de Formules

Logicomathématiques par la Machine Même dans la Conception du

Programme. Ph. D. Dissertation. L’
´
école Polytechnique f

´
éd
´
érale, Zürich,

Switzerland. https://doi.org/10.3929/ethz-a-000090226

[5] Travis Breaux and Jennifer Moritz. 2021. The 2021 Software Developer

Shortage is Coming. Commun. ACM 64, 7 (July 2021), 39–41. https:

//doi.org/10.1145/3440753

[6] Alan A. A. Donovan and Brian W. Kernighan. 2015. The Go Program-

ming Language. Addison-Wesley, Reading, MA, USA.

[7] Brandee Easter. 2020. Fully Human, Fully Machine: Rhetorics of Digital

Disembodiment in Programming. Rhetoric Review 39, 2 (2020), 202–215.

https://doi.org/10.1080/07350198.2020.1727096

[8] TomEverett. 2012. A collection of formal grammars written for ANTLR

v4. https://github.com/antlr/grammars-v4

[9] David Flanagan. 2011. JavaScript: the definitive guide (6
th
ed.). O’Reilly

Media, Inc., Sebastopol, CA.

[10] Martin Fowler. 2009. Projectional Editing. Martin Fowler’s Bliki.

http://martinfowler.com/bliki/ProjectionalEditing.htmlx.
[11] Christopher Michael Hancock. 2003. Real-Time Programming and the

Big Ideas of Computational Literacy. Ph. D. Dissertation. Massachusetts

Institute of Technology, Boston, MA, USA.

[12] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde.

2010. The C# Programming Language (Microsoft .NET Development

Series) (4
th
ed.). Addison-Wesley, Reading, MA. Annotated Edition.

[13] Martin Hirzel. 2022. Low-Code Programming Models. https://doi.

org/10.48550/arXiv.2205.02282 arXiv:2205.02282 [cs.PL]

[14] Sebastian Käss, Susanne Strahringer, and Markus Westner. 2022. Dri-

vers and Inhibitors of Low Code Development Platform Adoption.

In Proceedings of the IEEE 24
th

Conference on Business Informatics

(CBI 2022). IEEE, Amsterdam, The Netherlands, 196–205. https:

//doi.org/10.1109/CBI54897.2022.00028

[15] Lennart C.L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco

Visser. 2012. Software Development Environments on the Web: A

Research Agenda. In Proceedings of the ACM International Symposium

on New Ideas, New Paradigms, and Reflections on Programming and

Software (Tucson, Arizona, USA) (Onward! 2012). ACM, New York, NY,

USA, 99–116. https://doi.org/10.1145/2384592.2384603

[16] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming

Language (2
nd

ed.). Prentice-Hall, Englewood Cliffs, NJ.

[17] Donald ("Don") Ervin Knuth. 1974. A.M. Turing Award lecture. https:

//amturing.acm.org/award_winners/knuth_1013846.cfm

[18] Donald Ervin Knuth and Luis Trabb Pardo. 1976. The Early Develop-

ment of Programming Languages. Technical Report STAN-CS-76-562.

Computer Science Department, School of Humanities and Sciences,

Stanford University, Stanford, CA, USA.

[19] David H. Lorenz and John Vlissides. 2001. Designing Components

versus Objects: A Transformational Approach. In Proceedings of the

23
rd
International Conference on Software Engineering (ICSE 2001). IEEE

Computer Society, Toronto, Canada, 253–262. https://doi.org/10.1109/

ICSE.2001.919099

[20] Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin, and Jing Zhan.

2021. Characteristics and Challenges of Low-Code Development:

The Practitioners’ Perspective. In Proceedings of the 15
th
ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (Bari, Italy) (ESEM ’21). ACM, New York, NY, USA, 1–11.

https://doi.org/10.1145/3475716.3475782

[21] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and

Evelyn Eastmond. 2010. The Scratch Programming Language and

Environment. ACM Trans. Comput. Educ. 10, 4 (Nov. 2010), 16:1–16:15.

https://doi.org/10.1145/1868358.1868363

[22] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

Ada Lett. 34, 3 (Oct. 2014), 103–104. https://doi.org/10.1145/2692956.

2663188

[23] Michael Metcalf, John Reid, and Malcolm Cohen. 2018. Modern Fortran

Explained: Incorporating Fortran 2018 (5
th
ed.). Oxford University Press,

Oxford. https://doi.org/10.1093/oso/9780198811893.001.0001

[24] Jeff Meyerson. 2014. The Go Programming Language. IEEE Software

31, 5 (2014), 104–104. https://doi.org/10.1109/MS.2014.127

[25] Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. 2017. Tips

for Creating a Block Language with Blockly. In Blocks and Beyond

Workshop (B&B 2017), Franklyn Turbak, Jeff Gray, Caitlin Kelleher,

and Mark Sherman (Eds.). IEEE, Raleigh, NC, USA, 21–24. https:

//doi.org/10.1109/BLOCKS.2017.8120404 Position statement.

[26] Rob Pike. 2015. Simplicity is Complicated. Invited Talk at the European

Go Conference (dotGo). Paris, France.

[27] Daniel Pinho, Ademar Aguiar, and Vasco Amaral. 2023. What about

the usability in low-code platforms? A systematic literature review.

Journal of Computer Languages 74 (2023), 101–185. https://doi.org/10.

1016/j.cola.2022.101185

[28] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-

baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:

Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.

https://doi.org/10.1145/1592761.1592779

[29] Benjamin Roussey. 2017. Roll Your Own: What The Citizen Developer

Wave Means For Your Enterprise IT Security. TechGenix. https:

//techgenix.com/citizen-developer-enterprise-it-security

[30] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso

Pierantonio. 2020. Supporting the Understanding and Comparison of

Low-code Development Platforms. In Proceedings of the 46
th
Euromicro

Conference on Software Engineering and Advanced Applications (SEAA

2020). IEEE, Portoroz, Slovenia, 171–178. https://doi.org/10.1109/

SEAA51224.2020.00036

[31] Bjarne Stroustrup. 1994. The Design and Evolution of C++. Addison-

Wesley, Reading, MA.

[32] Fahim Sufi. 2023. Algorithms in Low-Code-No-Code for Research

Applications: A Practical Review. Algorithms 16, 2 (2023), 108. https:

//doi.org/10.3390/a16020108

[33] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. 2002. Com-

ponent Software: Beyond Object-Oriented Programming (2nd edition

ed.). Addison-Wesley, Reading, MA, USA.

[34] David Thomas and Andrew Hunt. 2000. Programming Ruby: the prag-

matic programmer’s guide. Addison-Wesley, Reading, MA.

[35] Guido van Rossum. 1994. Python Reference Manual. Technical Report

Release 1.0.2. Centrum Wiskunde & Informatica (CWI), Amsterdam,

The Netherlands.

[36] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape

for Block-Based Editors. In Proceedings of the 14
th

ACM SIGPLAN

International Conference on Software Language Engineering (Chicago,

IL, USA) (SLE 2021). ACM, New York, NY, USA, 83–98. https://doi.org/

10.1145/3486608.3486908

[37] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based

Syntax from Context-Free Grammars. In Proceedings of the 13
th
ACM

SIGPLAN International Conference on Software Language Engineering

(Virtual, USA) (SLE 2020). ACM, New York, NY, USA, 283–295. https:

//doi.org/10.1145/3426425.3426948

[38] David Weintrop and Uri Wilensky. 2017. How Block-based Languages

Support Novices. Journal of Visual Languages and Sentient Systems 3

(July 2017), 92–100.

Received 2023-04-28; accepted 2023-08-11

https://doi.org/10.1007/s10664-022-10244-0
https://doi.org/10.3929/ethz-a-000090226
https://doi.org/10.1145/3440753
https://doi.org/10.1145/3440753
https://doi.org/10.1080/07350198.2020.1727096
https://github.com/antlr/grammars-v4
https://doi.org/10.48550/arXiv.2205.02282
https://doi.org/10.48550/arXiv.2205.02282
https://arxiv.org/abs/2205.02282
https://doi.org/10.1109/CBI54897.2022.00028
https://doi.org/10.1109/CBI54897.2022.00028
https://doi.org/10.1145/2384592.2384603
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://doi.org/10.1109/ICSE.2001.919099
https://doi.org/10.1109/ICSE.2001.919099
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1093/oso/9780198811893.001.0001
https://doi.org/10.1109/MS.2014.127
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1016/j.cola.2022.101185
https://doi.org/10.1145/1592761.1592779
https://techgenix.com/citizen-developer-enterprise-it-security
https://techgenix.com/citizen-developer-enterprise-it-security
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.3390/a16020108
https://doi.org/10.3390/a16020108
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3426425.3426948

	Abstract
	1 Introduction
	1.1 General Purpose Programming Languages
	1.2 Simplicity is Complicated
	1.3 Contribution

	2 Objective
	2.1 Limitation of Current No-Code Platforms
	2.2 Desiderata for a Citizens' GPL

	3 Language Design Principles
	3.1 Thing-based
	3.2 Event-driven
	3.3 Third-party Composition
	3.4 Marketplace for Things
	3.5 Simple Programming

	4 Language Definition
	4.1 Thing
	4.2 Aliases
	4.3 Imports
	4.4 Signals and Rules
	4.5 Actions
	4.6 Functions
	4.7 Iterations
	4.8 Byproducts and Redirection

	5 Cloud Development Environment (CDE)
	5.1 Projectional Editing
	5.2 Thing Broker

	6 Language Internals
	6.1 Silent vs. Non-silent
	6.2 Binding Tree
	6.3 Initialization
	6.4 Run-Shallow vs. Run-Deep

	7 Real-World Deployment
	7.1 Experience Building Systems
	7.2 Lessons Learned
	7.3 Citizen Feedback
	7.4 Threats to Validity

	8 Discussion and Related Work
	9 Conclusion
	References

