The TOO Programming Language Specification

TOO, acronym for Things Object Oriented, is a general purpose programming language
(GPL) designed for citizen developers and professionals. It is tiny, but at the same time
immensely powerful. TOO is strictly typed, event-driven, component-based, and
object-oriented.

1. The following are the 9 syntax rules that define the grammar of TOO. Note that names in
the EBNF below that start with a capital letter such as Id and Const are tokens and hence not
outlined here:

thing ::= Id “{” (decl|when|event|func)* “}”

event ::= Id params

when ::= (Id [“[” decl “]1”1)+ Id params “{” actx “}”

func ::= Id params “»” params [“{” actx “}”]

act ::= [“x”] expr [“?” “{” actx “}” [“{” act* “}”]]

expr ::= ((Const|Id|call) [“[” (expr|“x”) “17] [“s” (decl|params)])+
call ::= Id “(” [((expr|“*”) “,”)x (expr|“*”)] “)”

params ::= "(" [(decl “,”)* (["..."] decl)] ")"
decl ::= [“[]”] [Id “:”] Id+ [“=” Const] [Const]

2. The semantics behind the syntax rules.

a. when: in the definition of a “when” syntax rule, the last identifier (Id) in the row denotes
the “signal”, while the first identifiers with their optional subscripts denote the "source".

b. func: “func” stands for function. The first “params” rule indicates the input parameters
while the second “params” rule that follows the redirect operator (the arrow) indicates
the output parameters. This means that functions in TOO language may return
multiple values. If the action block is absent, the function is abstract.

c. act: “act” stands for action. The condition operator (question-mark) indicates a
conditional action. If present, then "expr" byproduct must result in a boolean thing. In
such a case, the first action block is executed if this boolean evaluates to "true", and
the second action block (if present) is executed otherwise. The optional iterative
operator (asterisk) at the beginning indicates that the action should be executed
indefinitely in a loop. In case the iterative operator appears together with the condition
operator, the loop will break when reaching an empty/non-existing block (forming in
this way the known while loop).

d. expr: “expr” stands for expression. The “expr” syntax rule is composed of one or
more sub-expressions. Only the first sub-expression may start with a “Const” token,
and the “call” syntax rule cannot appear in the first sub-expression. The subscript
operator (between the brackets) could only be used if the (Const|Id|call) evaluates

to an array (recall that we may declare an array using the array notation in the “decl”
syntax rule). Last, the byproducts of this part, if exists, could be redirected by the
redirect operator (the arrow) to a list of corresponding parameters. This is analogous
to the := assignment operator in Go language.

e. decl: “decl” stands for declaration. The optional “[]” literal indicates an array (as
opposed to a scalar). The first 1d token before the colon indicates an alias name. The
second Id token indicates the thing name. It might be a cascaded definition of minors
(Id+). For example, in the following foo program:foo {math pi}, the declaration math
pi refers to the minor pi which is declared in the math program: math {pi:number}.
The Const token after the “=” literal is a string constant that denotes a JSON
initializer. For example, low:number="113", or address="{“city”:“London”,
“street”:“Downing”, “number”:10}', where address is the following program:
address {city:string street:string number}). The last Const token is a constant
string that indicates an explicit path. For example, math “/Stanford/Math” means that
thing math should be imported from “/Stanford/Math”.

3. TOO discriminates between 4 types of things:

(a) minor vs. major. Referring to the "thing" syntax rule, the Id token denotes the major
thing (also referred as the program), while the “decl” denotes a minor member.

(b) silent vs. non-silent. A thing is silent if it does not receive any signal (does not have a
"when" syntax rule in the code), nor sends any signal (does not have an “event”
syntax rule), recursively. Recursively means that in order to be silent, the minors must
also be silent.

(c) abstract vs. non-abstract. An abstract thing may only contain abstract functions, with
no “when” constructs, no “event” constructs, and no minors.

(d) local vs. remote.Remote thing is implemented by 3rd party and may run in a different
location, on a different OS, developed in a different language, but it communicates
with other things over the common network.

4. Non-silent things are executed as separate processes (Linux processes for example).
Silent things cannot be run independently but must be embedded within other things.
Non-silent things interact by communication via signals (the “event” and “when” syntax rules)
and via functions that are activated by RPC-like mechanisms.

5. The things defined by the syntax rules are universal and intangible. When these things are
instantiated during construction, they become tangible since they realize physical resources
such as memory. instance could be unnamed ("_") or named ("Pod1").

6. TOO supports a single data-structure which is a set of minor instances referred to as
members. Multiple data-structures are not allowed in a single program, nor nested data
structures (e.g., foo{bar{baz}}). Each member could be a scalar or an array.

7. Arrays in TOO are implemented by maps. This means that each array element is named.
the wildcard operator (star "*") can be used to obtain these named indices. For example, the
“age” array in the following expression has two instances:

age[“Bob”]=32, agel[“Alice”]=34
Then the following expression:

terminal Print(“name:”,*,“, age:”,agel[*]),
Will print:

name: Bob, age: 32

name: Alice, age: 34

8. TOO sanitizes the code to maintain it universal. This means that all account-specific
information is kept in a separate JSON file. For example, the code of following thermostat
thing is universal:

thermostat {
temperature:sensor
switch

temperature NotifiesLow () { switch TurnItOn () }
temperature NotifiesHigh() { switch TurnItOff() }

While the JSON counterpart keeps the account-specific information. This JSON is referred to
as the binding JSON and it specifies information regarding the instantiation of the minors.
The following is an example for a binding JSON that could be associated with the thermostat
thing.

------ ./0penU/Project/thermostat/thermostat[_]. json

"path": "/OpenU/Project",
"bindings": [{

"id": "temperature:sensor",

"instances":[{"id":"Como.T", "attributes": {"initial": "", "auxiliary": ""}3}]
e

"id": "switch",

"instances":[{"id": "Pod1", "attributes": {"initial": "", "auxiliary": ""}}]
1]

This binding JSON means that the temperature:sensor is bound to instance "Como.T", and
the switch is bound to instance "Pod1".

The information regarding the instantiation of the major thing(s) is found in another file,
located one step up in the directory tree. This is another binding JSON named “bindings.json”
and it conforms to a similar schema.

For example,
—————— ./0penU/Project/bindings. json
"path": "/OpenU/Project",
"bindings": [{

"id": "thermostat",
[{"id":

"instances": "attributes": {"initial": "", "auxiliary": ""}3}]

]

The following is the binding JSON schema (specified in Javascript):

export
path:
bindings:

}

export
id:
instances:

}

export
id:

attributes:

}

export
initial:
auxiliary:

Bundle {
string
BoundThing]]

BoundThing {
string
Instance[]

Instance {
string
Attributes

Attributes {
string
string

9. Dependencies are resolved implicitly by proximity. Referring to the thermostat example, it
depends on its two minors: sensor and the switch. Assuming that the thermostat is developed
at directory /Stanford/Class and the sensor thing is found in both /T00/Sensor and
/Stanford/Sensor, then the compiler will automatically take the one implemented in
/Stanford/Sensor since it's closer to /Stanford/Class. Nevertheless, the “decl” syntax rule

allows the developer to specify an explicit directory (in the last “Const” token) which
overrides the implicit directory calculated by proximity. For example, the following directs the
compiler to look for the switch code in an explicit directory “/T00/Core”:

switch “/T00/Core”

10. Initialization in TOO is versatile.

TOO has a predefined Initial function that is called during construction. This function takes
a JSON string and unmarshals this string to initialize the thing recursively (when the function
is called, the minors of this thing are already constructed). The developer may decide that:

(a) Initialization is totally in the responsibility of the user, in which case the developer leaves
this default code for Initial as is, or

(b) Initialization is partially in the responsibility of the user, allowing the developer to set
some default values and permitting the user to override the defaults, in which case the
developer inserts the initialization of the default values before the call to the unmarshal
function, or

(c) Initialization is totally in the responsibility of the developer (such as in the case of
initialization of the mathematical constant pi), in which case the developer completely
removes the call to unmarshal and insert the initialization code (in the pi example, it will be
pi.Assign(3.1415)).

11. Interfaces are similar to Go language interfaces. An interface is an abstract thing (see
definition above). A thing is said to conform to the interface if it implements all the interface
functions. The implemented function should match in name and parameters.

12. The NotifiesUp is a special event. Any non-silent thing has this event even if this event is
not explicitly declared (using the “event” syntax rule). This event is triggered when the thing
is up and running. The developer can use this rule for construction purposes that are not
covered by the Initial function using a constant initializer. For example, referring to the
thermostat above,
thermostat {

switch

temperature:sensor

thermostat NotifiesUp() { switch TurnItOff() }

The developer can also trigger actions when its minors are up and running. For example,
referring to the thermostat above, the thermostat makes sure that the switch is off when the
switch comes up.

thermostat {
terminal
switch
temperature:sensor
switch NotifiesUp() {
terminal Print(“Our switch is up and running”)

13. The following are built-in functions that are included in every scalar thing. The developer
may override them. For the clarification of the comments below, assume a “thermostat”
thing with an instance named “Boiler”.

Id() -> (string) // returns the instance name (thermostat Id() = “Boiler”)

Cat() -> (string) // returns the category of the thing (thermostat Cat() =
“thermostat”)

AsString() -> (string) // returns the JSON representation

Marshal() -> (json:string)

Unmarshal(json:string) -> (ok:boolean)

Location() -> (location) // returns the location of this thing and zero
location if the thing does not have a location.

Stop() -> () // stop the thing instance from running

Exist() -> (boolean) // always returns true if the reference thing is a scalar
(thermostat Exist()). If the reference thing is an array, the function returns
true if the indexed element exists in the array (referring to the “age”
below, age[“Washington”] Exist() will return false while age[“Bob”] Exist() will
return true).

NotExist() -> (boolean) // the inverse of Exist

example

14. The following are built-in functions that are included in every array thing. The developer
may override them. For the clarification of the comments below, assume an “age” array of
numbers ([Jage:number) that has two entries: age[“Bob”]=34 and age[“Alice”]=35. Note that
all functions are applied to the entire array and not to an element of the array. For example:
age Length().

Cat() -> (string) // returns the thing name (age.Cat() will return “age”)

Length() -> (integer) // returns the number of elements in the array (2)

AsString() -> (string) // returns the array JSON ({“Bob”:34,“Alice”:35})

Marshal() -> (json:string) // same as AsString

Unmarshal(json:string) -> (ok:boolean) // replaces the array with a JSON
representation of another array ({“Barbie:22,“Ken”:22}). Return true if this
replacement completed successfully

Empty() -> () // equivalent to a zero Length()

Delete(key:string) -> (ok:boolean) // removes the element indexes by “key”.
Returns true if the key was found in the array and was successfully deleted.

Instances() -> (o:[Jstring) // returns a new array that contains the names of
the keys (o[“0”]1=“Bob”,0[“1”]= “Alice”)

Sort(ascending:boolean) -> () // order the array for the range loop
(Sort(true) and then age[*] will range: “Alice”, “Bob”)

InverseOrder() -> () // reverse the order of the elements in the array

IsOrdered(ascending:boolean) -> (ordered:boolean)

RenameInstance(old:string, new:string) -> (ok:boolean)

Stop() -> O

15. Synchronous vs. Asynchronous calls.

Asynchronous function calls do not have any return values and hence the RPC does not
block the call. Synchronous calls are blocking, waiting for the returned values (or timeout). A
call to a function of a silent thing is never blocking. A call to a function of a silent thing will
never use RPC since the silent thing is embedded locally in the binary of the running
process, as opposed to a function of a non-silent thing that runs in a separate process.

16. The signals that may trigger a “when” construct could be initiated by (a) a specific source,
or (b) a finite set of sources, or (c) any source (wildcarded).

Example for (a):

temperature[“Room12”] NotifiesHigh() {...}

Example for (b):
temperature[x] NotifiesHigh() {...3}, where temperature is an array of finite number of
instances

Example for (c):
temperature[x] NotifiesHigh() {...}, where temperature is an array containing a single
instance named “+” or “*”

17. Aliases (cyclic aliases, alias basis)

Alias refers to the Id in the “decl” that preceded the colon (“:”) symbol. It is used as an
alternate name for clarifying the code, or as a way to solve ambiguity. For example, in case a
program is working with two “number” things, one could have the “low:number” alias name,
and the other could have the “high:number” alias name. The Id+ on the right side of the
colon (“:”) symbol represents the alias base. Aliasing an alias is allowed. In the following
example, “pi:number” and then “archimedes:pi”, archimedes aliases pi that aliases number.
The base at the root of the hierarchy is referred to as the basis. In this case, the basis will be

“number”).

18. Scoping rules define the visibility of variables across code blocks. They are similar to
other block-structured programming languages. For example, the following expression with
the redirect operator: a Plus(b) -> ¢, will create an instance of a temporary number that will
cease to exist at the end of the innermost block {}. Usage of “c” in the block will refer to this
temporary “c”, even if “c” is defined also in outer blocks.

19. Temporary things can only be created by the redirect operator and they cease to exist
then the execution block ends. Minor things persist for the entire duration of the program's
execution.

20. Inheritance rules are similar to Go language. This means that the developer can refer to
the minors of a minor (recursively) as if they are the root minors. The following example will
print the same thing twice. The first print demonstrates a “has a” relationship; the laptop has
a computer (the same way that it has a terminal), and the computer has a CPU. The second
print demonstrates a “is a” relationship; laptop is a computer and hence has a CPU. Both
relationships are legitimate and exist at the same time.

computer {
cpu
io

}

laptop {
computer
terminal

laptop NotifiesUp() {
terminal Print(computer cpu) // laptop has a computer
terminal Print(cpu) // laptop is a computer

21. TOO uses the CamelCase convention for things (e.g., mainSwitch), and the PascalCase
for functions and events (e.g., TurnItOn). The GUI of the TOO platform converts the
CamelCase to lowercase cyan with middle dots (e.g., main-switch), and the PascalCase to
lowercase magenta with middle dots (e.g., turn-it-on).

22. TOO uses “/I” for comments at the end of the line.

